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Abstract—The proliferation of wearable devices, e.g., smartwatches and activity trackers, with embedded sensors has already shown its

great potential onmonitoring and inferring human daily activities. This paper reveals a serious security breach of wearable devices in the

context of divulging secret information (i.e., key entries) while people are accessing key-based security systems. Existingmethods of

obtaining such secret information rely on installations of dedicated hardware (e.g., video camera or fake keypad), or training with labeled

data from body sensors, which restrict use cases in practical adversary scenarios. In this work, we show that a wearable device can be

exploited to discriminatemm-level distances and directions of the user’s fine-grained handmovements, which enable attackers to

reproduce the trajectories of the user’s hand and further to recover the secret key entries. In particular, our system confirms the possibility

of using embedded sensors in wearable devices, i.e., accelerometers, gyroscopes, andmagnetometers, to derive themoving distance of

the user’s hand between consecutive key entries regardless of the pose of the hand. Our Backward PIN-Sequence Inference algorithm

exploits the inherent physical constraints between key entries to infer the complete user key entry sequence. Extensive experiments are

conducted with over 7,000 key entry traces collected from 20 adults for key-based security systems (i.e., ATM keypads and regular

keyboards) through testing on different kinds of wearables. Results demonstrate that such a technique can achieve 80 percent accuracy

with only one try andmore than 90 percent accuracy with three tries. Moreover, the performance of our system is consistently good even

under low sampling rate and when inferring long PIN sequences. To the best of our knowledge, this is the first technique that reveals

personal PINs leveraging wearable devices without the need for labeled training data and contextual information.

Index Terms—Privacy leakage, wearable devices, leakage of PIN, hand movement trajectory recovery, PIN sequence inference
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1 INTRODUCTION

THE convenience of wearable devices, such as smart-
watches and fitness bands (e.g., Fitbit and Jawbone), has

greatly stimulated the growth of the market of mobile devices
in recent years; market researchers estimated that 72.1million
wearable devices will be shipped in 2015, which will be about
173 percent from the 26.4million wearable devices shipped in
2014 [8]. Such increasing popularity of wearable devices has
enabled a broad range of useful applications, including fitness
tracking, falling detection, gesture control and user authenti-
cation. Since suchwearable devices have the ability to capture
users’ handmovements andderive humandynamics directly,
a major concern arises on whether a user’s sensitive informa-
tion could be leaked and obtained by adversaries including
the user’s PIN sequence when accessing an ATM machine or
using debit cards for payment.

In this work, we demonstrate that a user’s personal PIN
sequence could be leaked through his wearable devices (e.g,
smartwatch or fitness tracker), when accessing a key-based
security system. Such systems are very common in daily lives.
Examples include accessing ATM cash machines, electronic
door locks, and keypad-controlled enterprise servers. A key-
based security system requires people to enter personal key
combinations on the keypad for identity verification. With
people tending to wear wearable devices around-the-clock,
the movements of their wrists during the key entry process to

a security system (i.e., clicking keys and moving between
clicks) are captured by the sensors on wearable devices. As
such, wearables could cause a new way of sensitive informa-
tion leakage when a user accesses the key-based security sys-
tems. In particular, adversaries can obtain sensor readings of
wearables via sniffing Bluetooth communications [26], [32] or
installing malwares [6] on the devices, and further infer the
user’s PIN sequence (e.g., ATMPIN sequences or key sequen-
ces on access control panels) for his own use.

There has been active study on sensitive information
leakage when using key-based security systems. Traditional
attacks rely on either shoulder surfing or hidden cam-
eras [11], [19]. Such attacks require direct visual contact to
key entry actions and additional installation efforts. Fur-
thermore, Shukla et al. propose a side-channel attack utiliz-
ing a camera-based method to recover smartphone lock
PINs from the user’s spatial-temporal hand dynamics with-
out directly seeing the keypad on screen [31]. The proposed
method has a low inference accuracy and requires cameras
to capture the user’s hand and the back side of the touch
screen. Two recent work [18], [34] propose to utilize sensors
in smartwatches to infer user’s typed words or passwords.
The MoLe [34] system relies on a linguistic model to infer
user’s typed words, which is difficult to work with non-
contextual inputs. Liu et al.[18] devise a system that
requires training of the sensor data to classify user inputs.

In contrast to these prior studies, we develop a training-
free, context-free technique to reveal a user’s private PIN
sequence (to a key-based security system) when a wrist-
wornwearable device is employed. Thewrist-wornwearable
devices could be either smartwatches or fitness trackers.
While the digital smartwatch is designed to be worn on
either hand, the user can wear it on the right hand without
the concern on traditional watch designed to adjust time
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easily when wearing it on the left hand. Additionally, many
people tend to wear fitness tracker on the right hand while
keepingwearing traditional watch on the left hand. The basic
idea is to exploit embedded sensors in wearable devices to
capture dynamics of key entry activities and derive fine-
grained hand movement trajectories traversing secret key
entries. While wearable devices have equipped with various
sensors, it is challenging to accurately recover such fine-
grained hand-movement trajectories that exhibit only mm-
level difference in distance between keys via low-fidelity sen-
sors. In addition, due to hand vibrations and rotations, the
coordinate system of a wearable device is not always aligned
with a fixed reference, which makes it hard to track the hand
movements by using sensor readings directly. Additionally,
in order to obtain a person’s key entries without user cooper-
ation or drawing any attention, the adversary has to achieve
the PIN sequencewith no training or contextual information.

To address these challenges, our approach examines the
inherent physics phenomenon extracted from the user’s key
entry activities via wearable sensors and develops distance
calculation and direction derivation schemes to produce
mm-level accuracy when estimating the moving distance
and angle between two consecutive key entries. To obtain
the complete PIN sequence, our backward PIN-sequence
inference algorithm exploits the physical constraints of dis-
tance between keys and temporal sequence of key entry
activities to construct a tree of candidate key entries for
determining the PIN sequence in a reversedmanner, because
in many practical cases, the “Enter” key is the last key after
the user enters his/her PIN sequence. The mm-level preci-
sion of estimating the fine-grained moving distance and
direction between two keys and the backward PIN-sequence
inference algorithm enable our system to obtain the user’s
PIN sequence without training and contextual information.
Through extensive real experiments, we find that our PIN
sequence inference algorithm can achieve high accuracy
regardless of different types of wearables and layouts of key-
pads. Furthermore, the performance of our system is consis-
tently good even under low sampling rate (e.g., 25 Hz) or
when inferring long PIN sequences. Such a technique can
easily be extended to support password recovery when peo-
ple type on keyboards while wearingwearables.

We summarize our main contributions as follows:

� We demonstrate that a single wrist-worn wearable
device can reveal a user’s PIN sequence to key-based
security systems. We develop a training-free
approach by exploiting the inherent physics mean-
ing extracted from sensor readings on wearables.
Such an approach does not require contextual infor-
mation, allowing it to recover random key entries.

� We develop the distance estimation and direction
derivation schemes that capture the fine-grained
hand movements at mm-level precision.

� We show that it is possible to infer a complete user’s
PIN number via a backward PIN-sequence inference
algorithm. By exploiting spatial and temporal con-
straints of PIN entries and the fine-grained handmove-
ment analysis, our approach can accurately pin-point
the location of each PIN entrywith the right sequence.

� We conduct extensive experiments with 20 partici-
pants wearing two types of smartwatch and a proto-
type of wearable on key-based security systems such
as ATM keypads and keyboards over a thirteen-
month period. We show that our system can achieve

80 percent accuracy of inferring PIN sequences with
only one try and over 90 percent accuracy with three
tries without training and contextual information.

� We evaluate the performance of our system when
inferring the PIN sequenceswith increasedPIN length
and under different sampling rates. We demonstrate
that our system can achieve a good performance
when inferring long PIN sequences (e.g., 6-PIN
sequences) and under low sampling rate (e.g., 25Hz).

The rest of the paper is organized as follows. We first put
our work in the context of related studies in Section 2. In
Section 3, we investigate the feasibility of using wearables to
obtain a user’s PIN sequence of key-based services. We then
describe the design of our PIN-sequence inference frame-
work in Section 4. Next, we present two schemes of distance
estimation and direction derivation to capture fine-grained
hand movements via sensors on wearables in Section 5. The
backward PIN-sequence inference algorithm to recover
the complete user PIN sequence is described in Section 6. We
present the detailed implementation of our framework in
terms of pre-processing of the sensor data and coordinate
alignment in Section 7. In Section 8, we perform extensive
evaluation of our approach involving real key-based security
systems. Finally, we discuss the relative issues and conclude
our work in Sections 9 and 10 respectively.

2 RELATED WORK

Recent studies show that embedded sensors on mobile devi-
ces, such as accelerometers and touch screens, can capture
users’ motion and leak their sensitive information [13], [22],
[25], [28], [29], [36]. Recently, wearable devices, such as smart-
watches and fitness bands, extend the sensing capability to
limbs and enablemany useful applications [15], [17], [24], [38].
These existing studies have shown the sensing capabilities of
up-to-date mobile devices, which inspire us to explore the
potential of using wrist-mounted wearables to recover fine-
grained handmovements, and study towhat extent the user’s
sensitive information could be leaked from their fingers.

Toward this end, we explore the possibility of recovering
people’s private PIN sequences through their wrist-worn
mobile devices when they enter PINs on key-based security
systems. Traditionally, key-based security systems could be
breached by several methods, such as hidden cameras and
skimmers [7], [11], [37]. For example, some ATM machines
are attached by a hidden camera, which was used to record
PIN sequences or body movements of entering PINs [19].
An adversary may also put a skimmer into the ATM
machine card slot. When the customer slides their card, it
will go through the skimmer first and then into the machine.
A chip inside the skimmer device records information about
the account without the knowledge of the customer [1].
These existing methods largely depend on installing dedi-
cated devices in the restricted area.

In addition, researchers show that it is possible to recog-
nize users’ keystrokes by using acoustic approaches. Berger
et al. [12] demonstrate that by using linguistic models and
recorded typing sound on a keyboard, an attacker can suc-
cessfully reconstruct the typed words. Zhu et al. [39] present
a context-free and geometry-based approach to recover key-
strokes by using multiple smartphones to record acoustic
emanations from the keystrokes. Wang et al. [35] develop a
system that extracts and optimizes the location-dependent
multipath fading features from the audio signals and lever-
ages the signal diversity resulted from the dual-microphone
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interface in a mobile device to identify key entries typed on a
keyboard. Along this line, Jian et al. [16] demonstrate that
mobile audio hardware in off-the-shelf mobile devices can
be exploited to discriminate mm-level position differences,
based onwhich they develop a system that can locate the ori-
gin of keystrokes by using only a single phone behind a key-
board [16]. Martinovic et al. demonstrate that the captured
electroencephalography (EEG) signals from head-wearable
EEG devices can reveal whether the presented stimuli (e.g.,
images) are related to the user’s private information such as
bank cards, area of residence and PIN numbers. [21]. Mar-
quardt et al. develop an application that can utilize acceler-
ometers in a smartphone to sense the vibrations caused by
keystrokes from a nearby keyboard and further identify the
keystrokes [20]. Their proposed technique relies on a linguis-
tic model and labeled training data and the system is highly
sensitive to environment noise (e.g., peoplemoving around).

The most related work to ours are two concurrent studies,
which analyze the leak of users’ passwords or typed words
from smartwatches [18], [34]. Wang et al. [34] devise a system
that can infer typed words on a keyboard by utilizing motion
sensors in smartwatches. The system assumes to know the
fixed initial position of the smartwatch and relies on a linguis-
tic model to infer typed words, which makes it hard to deal
with non-contextual inputs, such as passwords and PIN
sequences. Liu et al. [18] apply sensors in a smartwatch to
infer users’ inputs on a keyboard or POS terminal by utilizing
machine-learning based techniques. Their approach requires
training of hand movements between keystrokes, and it is
unclear how the system handles changing positions of the
wrist during typing. Moreover, both of the above work can
only achieve moderate accuracy in deriving the user inputs
given limited number of tries. Different from previous work,
our key entry inference system is training-free, contextual-
free and does not involve additional devices. Furthermore,
our backward PIN-sequence inference framework is not sub-
ject to environmental noises, such as ambient noise, light
interference and peoplewalking around.

3 ATTACK MODEL AND FEASIBILITY STUDY

The positions of wearable devices on human bodies natu-
rally enhance the devices’ capability of the activity recogni-
tion and facilitate many applications based on the context of
activities. However, such strong sensing ability brings up
new security and privacy issues. In this work, we study the
possible personal secret leakage in a very common scenario
that people wear wrist-worn wearable devices while using
key-based security systems, such as ATM machines, pass-
word secured door entries, and keypad-controlled enter-
prise servers. In this section, we describe the attack model
and explore the feasibility of utilizing wearable devices to
recover personal key entries in key-based security systems.

3.1 Attack Model
We consider an adversary aiming at recovering a person’s
secret PIN entries leveraging embedded sensors (e.g., accel-
erometer, gyroscope and magnetometer) in wearable devi-
ces worn on his/her wrist. The adversary has the
knowledge of where the victim visits the key-based security
system and can obtain the layout of the keypad. We assume
that the adversary is able to access the sensor data and com-
municate over networks on the smartphone, but cannot
observe the PIN entry activities visually by any means.
The wearable device is usually paired with the user’s

smartphone via Bluetooth and constantly sends sensor data
to the person’s smartphone for logging purpose. Most wear-
ables are using Bluetooth Low Energy (BLE) to transmit sen-
sor data. With low energy, BLE comes with low security
capability compared with Bluetooth. As a result, for exam-
ple, the sensor data could be sniffed by the adversary by
using Bluetooth sniffing techniques [10], [23].

But the adversary does not have access to training data,
which is specific to a particular key-based security system.
Particularly, we identify two representative attacking sce-
narios as follows:

Sniffing Attacks. An adversary can place a wireless sniffer
close to a key-based security system (e.g., ATM machine or
key-based security door) to eavesdrop sensor data from the
wearable device, which isworn on the victim’swrist when he/
she enters security PINs into the security system. The adver-
sary utilizes the wireless sniffer to capture Bluetooth packets
sent by the wearable device to its associated smartphone [14],
[26], [32], and determines the victim’s PIN sequence based on
the sensor data extracted fromBluetooth packets.

Internal Attacks. An adversary can access the embedded
sensors in the victim’s wrist-worn wearable device by
installing a malware app without the victim’s notice [6].
The malware app waits until the victim accesses the key-
based security system and keeps sending sensor data back
to the adversary’s server through the Internet. The adver-
sary can aggregate the sensor data on the server to deter-
mine the victim’s PIN sequence remotely.

3.2 Intuitions of Hand Movements behind Key Entry
Activities

When accessing a key-based security system, a person’s PIN
sequence is entered through multiple key clicks. During
each key click, there exhibits acceleration and deceleration
of keys when pressed and released by the user. This simple
information can serve as a guideline to discriminate differ-
ent key clicks. The critical question we need to answer is
that whether the sensors on wearable devices can discrimi-
nate between key clicks and capture the fine-grained move-
ments between two consecutive clicks. In particular, we
look for unique sensing patterns inherited from such accel-
eration and deceleration that could be used to facilitate the
discrimination of key clicks and distance estimation of hand
movement between two key clicks.

A key click can be separated into two consecutive timeperi-
ods: key pressing and key releasing periods. The key pressing
period starts when a person’s finger touches the key and ends
when the finger presses the key to the bottom of the keypad
(denoted as pressing point). The key releasing period starts
when the person’s finger releases the key from the bottom of
the keypad and ends when the finger stops moving after it is
detached from the key (denoted as releasing point). Intuitively,
the hand accelerates towards the keypad while pressing the
key before the pressing point, and decelerates and stops
quickly due to the reaction force from the key that touches the
bottom of the keypad.When releasing the key, the hand accel-
erates towards the opposite direction to the keypad and stops
after the finger is detached from the keypad. We illustrate the
hand’s acceleration/deceleration in the Z-axis caused by key
pressing and releasing in Fig. 1. We use the keypad’s coordi-
nate systemwith theZ-axis perpendicular to the keypad plane
and pointing out from the keypad, and the X-axis aligned to
the direction connecting the first and the second key.

Furthermore, in between two consecutive key clicks, the
key entry activity involves the handmovement from one key
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to another. As shown in Fig. 1, the accelerations on theX axis
present an obvious up-and-down trend, while the accelera-
tions on the Z and Y axes remain stable. The intuition behind
this phenomenon is that the hand usually accelerates and
moves relatively in parallel with the keypad on the shortest
trajectory between the first and second keys. After passing
the middle point of the trajectory, the hand decelerates to
stop when it reaches the Key 2’s position. Such unique up-
and-down acceleration trend is very useful to help capturing
the small distance of handmovement between two keys.

Feasibility Study. To study whether the sensors on wear-
ables can capture such detailed acceleration patterns during
key entry activities, we conduct two sets of experiments on
the number pad of a Dell USB wired keyboard L100 with an
Invensense MPU-9150 9-axis motion sensor (i.e., IMU),
which is a prototyping alternative to a wearable device. The
sensor uses a moderate sampling rate of 100 Hz and con-
tains an accelerometer, gyroscope and magnetometer that
are comparable to embedded sensors in wearable devices.
During the experiments, the participant wears the sensor on
his wrist and keeps his hand in parallel to the keypad below
so that the sensor’s Z axis points out and is perpendicular to
the keypad. The first set of experiments moves from keys 4
to 5, which is along the sensor’s X axis, and the second set
of experiments moves from keys 5 to 8 along the sensor’s Y
axis. The distance between keys 4 to 5 is only 1:9 cm, the
same as that between keys 5 to 8. We use a camera on top of
the keyboard to record the moving distance ground truth of
the sensor. We note that these two experiment setups are
special as the sensor’s coordinate system is fully aligned
with the keypad’s coordinate system.

We estimate the sensor’s moving distance by applying the
double integration to the acceleration readings of the X axis
and the Y axis from the accelerometer on the sensor. The
details of the distance estimation scheme are presented in
Section 5. Fig. 2 compares the ground truth and the estimated
distance in 10 runs of aforementioned settings, respectively.
We find that overall the estimation errors are less than 1 cm,
the mean error of the 10 runs of each experimental setting is
as low as 0.27 and 0:24 cm on theX andY axes, respectively.

Additionally, we find that there is an unique up-and-
down acceleration pattern captured by the sensor, which can
be utilized to determine the sensor’s moving direction. Fig. 3
shows that the up-and-down acceleration pattern (like a sine
wave) appears onX and Y axes respectively when the sensor
is moving along X or Y axes. The capability of accurate dis-
tance estimation of the small moving distance between keys
and the moving direction determination are the foundation
for recovering the user’s secret PIN sequence. Thus, these

observations are encouraging as they indicate the sensors on
wearables have the capability to capture the fine-grained
handmovements to facilitate PIN sequence recovery.

4 SYSTEM DESIGN

In this section, we discuss the challenges in our system
design and provide an overview of our system.

4.1 Challenges
The goal of accurately recovering personal PIN sequences
by using the embedded sensor of wearable devices worn on
the victim’s wrist is not trivial. Our system design and
implementation need to overcome the following challenges:

Robust Fine-Grained Hand Movement Tracking. Using
embedded sensors in wrist-worn wearable devices to recon-
struct the trajectories of handmovements in key-entry activi-
ties is challenging since the sensors not only capture the
acceleration patterns of key clicks and movements from key
to key, but also are affected by the users’s unconscious hand
vibration and rotation. Furthermore, due to the limited size
of the keypad, the distance between keys is small, making it
hard to estimate using the low-grade sensors on wearables.
Thus, we need to design distance estimation and direction
derivation schemes to accurately estimate the hand moving
distance between keys and track the direction of fine-grained
handmovements despite various interfering sensing factors.

Training-Free Key Entry Recognition. Considering the
attacking nature of our goal, it would be unlikely for the
adversary to collect any training data (e.g., sensor data of
hand movements) before recovering a user’s PIN sequence.
And it is also unlikely to have the user’s cooperation during
this process. Thus, we aim to infer the user’s secret PIN
sequence leveraging wearables without training efforts
involving target users’ participation.

Recovering PIN Sequence Without Contextual Information.
The target user’s PIN sequences used in key-based security
systems are usually consisted of numbers without contex-
tual information or linguistic meaning. Our developed
method should have the ability to recover sensitive informa-
tion consisting of random combination of numbers. This

Fig. 1. Acceleration patterns inherited from key entry activities, shown in
the readings of a 3-axis accelerometer on IMU.

Fig. 2. Distance estimation of the number pad on the Dell keyboard
based on IMU.

Fig. 3. Accelerometer readings from IMU.
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requires our system to be able to recover PIN sequences
without relying on linguistic model or dictionaries.

Sensing with Single Free-Axis Wearable Device. Using a sin-
gle wearable device to recover PIN sequence is necessary
because usually there is only one wearable device available
on the wrist of the hand that performs key entry activities.
There is no reference point available besides the single
wearable device. Furthermore, sensor readings are with
respect to the wearable device’s coordinate system, which is
not stable and changes often according to the device’s pos-
ture. In order to recognize key entry activities and derive
fine-grained hand movement trajectories, it is important for
our system to translate the sensor readings from the wear-
able device’s coordinate system to a fixed coordinate sys-
tem, such as the keypad’s coordinate system.

4.2 System Overview
The main goal of our work is to demonstrate that using
wearable devices could reveal people’s secret PIN sequence
to key-based security systems such as ATM machines, elec-
tronic-key based door entries, and enterprise servers. We
design and implement a system that has the capability to
reveal target user’s secret PIN sequences through tracking
the fine-grained hand movement trajectories related to key
entry activities. The basic idea is to examine the acceleration
of the user’s hand movements when accessing key entry
based security systems. Based on the feasibility study of
two special cases in Section 3, wrist-worn wearables can
capture the unique patterns of acceleration embedded in
the hand movements caused by entering the secret PINs.
Such unique patterns can be exploited to estimate hand
moving distances and directions during the key-entry activ-
ities, which can be leveraged to reconstruct fine-grained
moving trajectories of the user’s hand and infer the PIN
sequence traversed by the trajectories.

The flow of our system is illustrated in Fig. 4. Our system
takes as input the raw sensor readings, such as acceleration,

rotation rate, and quaternion, from the wearable device
worn on a target user’s wrist. Then the system performs Key
Click Detection and Trace Segmentation to detect each key click
by examining accelerations and separate the sensor read-
ings into segments containing consecutive key entries. The
Data Calibration utilizes Quaternion-based Coordinate Align-
ment and Noise Reduction techniques to translate each seg-
ment of accelerations into the measurements with respect to
the coordinate system of the keypad, and remove noise
from readings by using the Savitzky-Golay filter.

The core of our system consists of two components, Fine-
grained Subpath Recovery and Backward PIN-Sequence Infer-
ence, which first estimate the distance and direction of hand
movements in each segment of acceleration collected
between two consecutive key entries, and then integrate the
estimated distance and direction of each segment to deter-
mine the entire PIN sequence based on the physical con-
straints of the keypad and temporal relationship of the key
entering sequence. We define a subpath as the trajectory of
the user’s hand movement between two consecutive key
clicks inside one segment. As shown in Fig. 4, the Fine-
grained Subpath Recovery consists of two subtasks:Distance
Estimation and Direction Derivation. The Distance Estimation
identifies the unique acceleration patterns embedded in the
key pressing and releasing activities and perform distance
estimation based on such patterns. Additionally, the Direc-
tion Derivation leverages the estimated distance together
with the acceleration patterns caused by the hand move-
ment in each subpath to derive the hand moving direction.

After obtaining the estimated moving distance and direc-
tion in each subpath, the system develops the Backward PIN-
Sequence Inference to recover the user’s PIN sequence. Specif-
ically, our systemfirst applies the Backward Subpath Integration
to combine subpaths in a backward manner in time series.
Then the system performs Point-wise Euclidean Distance Accu-
mulation to calculate the accumulated Euclidean distance for
each candidate of key sequence at each estimated key position
(i.e., point-wise). Last, the Tree based Key Sequence Derivation
generates a tree with the candidates of key sequence and their
accumulated Euclidean distance. The key sequence candidate
with the minimum accumulated Euclidean distance is chosen
to be the output of the system, which is the inferred PIN
sequence that the victim uses in the key-based security sys-
tem. Note that, this work can be extended to identify key-
board typing or keyboard passwords by using the Bayesian
model and dictionaries [34].

5 DISTANCE ESTIMATION AND DIRECTION

DERIVATION SCHEMES

Our system requires tracking hand movement trajectories
on small keypads accurately without training. Inspired by
the basic dead reckoning technique, we seek to derive
such fine-grained trajectories based on hand movement
distances and directions. Particularly, we develop Distance
Estimation and Direction Derivation schemes to estimate the
distances and derive direction for each subpath (i.e.,
between two consecutive key clicks).

5.1 Distance Estimation
In order to accurately estimate the hand movement distance
between two consecutive key clicks, we need to identify the
patterns in the sensor data corresponding to the hand move-
ment precisely. Therefore, our system needs to first search
the starting and ending points of the sensor data caused by

Fig. 4. PIN-sequence inference framework.
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the hand movements based on pressing and releasing
points of key clicks; then calculate the hand moving dis-
tance by utilizing the extracted patterns from the sensor
data. In the rest of the section, we assume the system has
performed the Key-click Detection and segmented the sensor
data to traces that capture hand movements between two
consecutive key clicks. The sensor data in each trace are
translated into keypad coordinate system through Coordi-
nate Alignment. The details of Key-click Detection and Coor-
dinate Alignment will be discussed in Section 7. Fig. 5
illustrates the coordinate system of a typical ATM keypad,
where the center of key 5 is the origin; the directions of posi-
tive X and Y axes are in parallel with the direction from keys
5 to 6 and keys 5 to 2, respectively; and the Z axis is perpen-
dicular to the X-Y plane, pointing out from the surface of
the keypad. The four quadrants of the X-Y plane are defined
as the standard quadrants in a two-dimensional Cartesian
system. Fig. 5 also shows some examples of moving direc-
tions of key clicks, e.g, 13 indicates clicking from keys 1 to 3.

Starting and Ending Points Searching Based on Pressing and
Releasing Points. The hand movements from one key to
another happen after releasing the first key and end when
touching the second key. Ideally, the hand movement dis-
tance can be calculated based on the acceleration (e.g., accel-
eration from the Z-axis) extracted between the releasing
point of the first key click and the pressing point of the sec-
ond key click. However, such coarse segmentation includes
the sensor data resulted from hand vibrations usually result
in large estimation errors. In Section 3, we find that the
acceleration captured during the hand movements between
consecutive key clicks has significant and unique patterns
on X and Y axes (i.e., either up-and-down or down-and-up
shapes due to different moving directions).

Apparently, such unique acceleration patterns include
merely the dynamics of the key-to-key hand movements,
and can be further utilized to facilitate accurate hand mov-
ing distance estimation. In order to determine the right seg-
ment of acceleration data corresponding to the unique
acceleration pattern, we propose to further search the start-
ing and ending points of the pattern based on the segment
of sensor data. Specifically, we define the first zero-crossing
point occurring before and after the unique acceleration pat-
tern as the starting point and ending point, respectively. The
intuition behind this is that when a hand moves from one
key to another, its moving trajectory is mainly in parallel
with the X-Y plane of the keypad. Therefore, the accelera-
tion and deceleration of the hand during such movement
dominates the acceleration on X and Y axes, and results in
the acceleration that always experiences a pattern of
½0; ak;maxðak;minÞ; 0; ak;minðak;maxÞ; 0� as shown in Fig. 6, where

ak;max and ak;min denote local maximum and minimum of
acceleration on X and Y axes with k ¼ x or y.

Thus, we design a strategy to locate the starting and ending
points of the unique acceleration pattern so that we could esti-
mate the distance between two key clicks accurately. Our strat-
egy involves the following steps: 1) extract the acceleration on
X and Y axes between the releasing and pressing points of two
consecutive key clicks respectively; 2) examine the extracted
acceleration to find the ax;max; ax;min; ay;max; ay;min; 3) determine
the dominated axis by choosing the axis has themore significant
unique acceleration pattern (i.e., a larger peak-to-peak value
defined by jak;max� ak;minj; k ¼ x or y ); 4) find the starting
point of the unique pattern on the dominated axis by searching
the first time that acceleration crosses the axis (i.e., zero-cross-
ing point) before ak;max or ak;min, whichever occurs earlier; 5)
similarly, find the ending point of the unique pattern on the
dominated axis by searching the first zero-crossing point after
ak;min or ak;max, whichever occurs later. The accelerations
within the starting and ending points derived above merely
correspond to the hand movements between two consecutive
key clicks and are utilized to calculate the handmovement dis-
tance and direction in our schemes.

Distance Calculation. The distance estimation between
two consecutive key clicks is obtained by considering the
movements in both X and Y axes. To perform accurate esti-
mation, we compute the small movement between two sam-
ples in sensor data and then sum up to produce the distance
estimation in one acceleration segment bounded by the
identified starting and ending points. As the distance is two
times integration of accelerations, we utilize trapezoidal
rule to approximate each integration.

5.2 Direction Derivation
In order to recover the complete PIN sequence, our system
needs to determine the moving direction of each subpath
during the key-entry process in addition to the distance. We
define the moving direction of a subpath as the angle
between the positive X axis and the subpath with counter-
clockwise rotation as shown in Fig. 5. The moving direction
is denoted as # 2 ½0�; 360�Þ. The basic idea is to find the
direction based on the ratio of distances on X and Y axis
derived from hand movement acceleration. In particular,
we design a two-step approach, including the Quadrant
Determination and Slope-based Direction Calculation. The
Quadrant Determination first leverages the unique accelera-
tion patterns to determine which quadrant of X-Y plane that
the hand moving direction belongs to. Then the Slope-based
Direction Calculation examines the slope angle of the mov-
ing direction in a quadrant ranging from 0 to 90 degree
based on the hand movement distances on X and Y axes,
and converts the slope angle to the moving direction #.

Fig. 5. Illustration of the coordinate system on a typical key pad and
examples of moving directions of key clicks, 13, 39, 16, and 68.

Fig. 6. Searching for starting and ending points based on releasing and
pressing points within an acceleration segment.
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Quadrant Determination. Intuitively, the hand movement
acceleration projected on X and Y axes results in different
combinations of the unique acceleration patterns in terms of
the order of ak;max and ak;min on X and Y axes with
k ¼ x or y. For example, when the hand moves towards
45 degree, the acceleration on X and Y axes both experiences
the ak;max before the ak;min, while the acceleration on the
X axis experiences the ax;max after the ax;min and the acceler-
ation on the Y axis experiences the opposite when the hand
moves towards 135 degree. Therefore, we leverage the com-
binations of unique acceleration patterns on X and Y axes to
determine the quadrant that a certain moving direction
should belong to. Specifically, the quadrant of the moving
direction can be determined by the following equation:

Q ¼

1; if Iax;max < Iax;min
&Iay;max < Iay;min

;

2; if Iax;max > Iax;min
&Iay;max < Iay;min

;

3; if Iax;max > Iax;min
&Iay;max > Iay;min

;

4; if Iax;max < Iax;min
&Iay;max > Iay;min

:

8>>><
>>>:

(1)

where Q is the quadrant index, Iaaxe;max and Iaaxe;min
denotes

the index of the local maximum and minimum on X and Y
axes, respectively.

Slope-Based Direction Calculation. After quadrant determi-
nation, we compute the slope angle of the moving direction
within each quadrant based on the ratio of the distance on
X and Y axes by utilizing the following equation:

f ¼ arctan
sy
sx

� �����
����: (2)

Equation (2) returns the relative moving direction defined
in a quadrant ranging from 0 to 90 degree, we further con-
vert the f to an absolute moving direction (i.e., the direction
defined within keypad coordinate ranging from 0 to 360
degree). Given the quadrant index Q, the absolute moving
direction # can be derived as follow:

# ¼

f; if Q ¼ 1;

180� � f; if Q ¼ 2;

180� þ f; if Q ¼ 3;

360� � f; if Q ¼ 4:

8>>><
>>>:

(3)

Once we estimate the distance and derive the direction of
a subpath, the relationship between two consecutive key
clicks in the contained subpath is determined. Therefore, if
the position of either key click is known, we can derive the
position of the other key click according to the derived mov-
ing distance and direction. We show an example of distance
estimation and direction determination for 6 subpaths
f46; 28; 37; 64; 82; 73g. Fig. 7 shows the clustering results in
both distance and direction when treating the first click as
the origin. We observe that each key-click combination is
clustered together around the ground truth (shown as the
red star) based on our distance estimation and direction
determination schemes, indicating that our schemes have
the capability to capture the fine-grained hand movement
trajectories in key entry activities.

6 BACKWARD PIN SEQUENCE INFERENCE
ALGORITHM

After performing Fine-Grained Subpath Recovery grounded
on distance estimation and direction determination, we

next describe how to reconstruct the hand-movement trajec-
tory using the estimated subpaths to infer the target user’s
PIN sequence.

6.1 Backward Subpath Integration
We notice that all key-based security systems require the
user to execute the verification by pressing key Enter or
Confirm, which is at a known position on the keypad. We
can then utilize this information to reconstruct the hand-
movement trajectory on the keypad by examining the sub-
paths in a backward time sequence. That is, the position of
key Enter can be considered as a end of the last subpath,
and the starting of the last subpath indicates the position of
the last key clicked before key Enter.

More generally, we concatenate the estimated end of the
ðj� 1Þth subpath to the starting of the jth subpath and con-
tinue to repeat this step until reaching the starting of the
first subpath. By integrating all the derived subpaths in
such a backward head-tail connecting way, we can obtain a
trajectory roughly matching the hand movements during
the key-entry process, called the Naively Integrated Trajec-
tory. Ideally, the vertices on the Naively Integrated Trajec-
tory should be mapped to real-key positions with the last
vertex mapping to the center of Key Enter.

6.2 Point-Wise Euclidean Distance Accumulation
Although we can recover each individual subpath based on
the estimated distance and derived direction, each subpath
contains small errors and the Naively Integrated Trajectory
inherits and further accumulates such small errors in each
subpath, resulting in mapping to the wrong-key positions on
the keypad. Fig. 8 shows an example that the naively inte-
grated subpaths (i.e., in black dashed lines) cannot recover
the correct target user’s PIN sequence, e.g., “419”, instead,
they return “529” as a result. To reduce cumulative errors,
we propose a Point-wise Euclidean Distance Accumulation
approach. In this approach, instead of matching the Naively
Integrated Trajectory directly to the keys on the keypad, we
consider each subpath separately by comparing the closeness
in terms of the Euclidean distance between the starting point
of the subpath (i.e., point-wisely) and real key positions,
while the ending point of the subpath is fixed on real keys.

In particular, each subpath j contains the estimated dis-
tance (Sj) and direction (#j). Given a real key’s position as
an ending point (assuming this key is clicked at this ending
point), we can estimate the starting point ( exj; eyj) of each sub-
path. We conduct this effort in a backward manner starting
from Enter key because we know the ending point in the

Fig. 7. Illustration of the clustering results of distance estimation and
direction derivation for six different subpaths f46; 28; 19; 64; 82; 91g by
treating the first key click as the origin. The red star is the ground truth.
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last subpath is the Enter key. The estimation of the starting
point in the jth subpath is obtained as following:

exj ¼ cosð#j þ 180Þ � Sj þX ;eyj ¼ sinð#j þ 180Þ � Sj þ Y;
�

(4)

where ðX ;YÞ are the coordinates of ten real number keys
f1; 2; 3; . . . ; 9; 0g on the keypad. Given that there are ten real
number keys in the key pad, there will be ten estimation
results of the starting points in subpath j. We note that, for
the last subpath, ðX ;YÞ is the coordinates of the key Enter.
Once the starting point of the jth subpath is estimated, our
algorithm will recursively move to the previous subpath.
By doing so, we introduce the concept of accumulated
Euclidean distance, which is the sum of the Euclidean distan-
ces between the starting point of a subpath and the coordi-
nate of a real key on the keypad, over all consecutive
subpaths. We can recursively run the following equation to
calculate the accumulated Euclidean distance

Dj ¼ Djþ1 þ dj; (5)

where Dj and Djþ1 denote the accumulated Euclidean dis-
tance of two consecutive subpaths, respectively, and dj is
the Euclidean distance between the estimated starting point
( exj; eyj) of the jth subpath and a real key in the keypad.
The resulted final accumulated Euclidean distance meas-
ures the closeness of the real key combination, defined as
PIN sequence candidate, to the estimated consecutive sub-
paths while leveraging the dimension of the keypad. The
insight is that we would like to explore the possible can-
didate keys leveraging the estimation from each subpath
without fixing to a particular key matching. In this way,
we will not end up with only one Naively Integrated Tra-
jectory, instead, we will obtain multiple key sequences as
the candidates for PIN sequence recovery. Furthermore,
by conducting the point-wise Euclidean distance accumu-
lation for each candidate of PIN sequence, our algorithm
balances the contribution of each estimated subpath and
reduce the accumulated errors that impact the accuracy
of PIN sequence inference.

Example. Fig. 9 shows an example of how the Euclidean dis-
tance is accumulated point-wisely in backward for a spe-
cific candidate PIN sequence “846” (The real PIN entry in
this example is ”419”). In the sequence of Fig. 9, (a) we first
generate the Naively Integrated Trajectory consisted of
three consecutive subpaths, subpath 1, subpath 2, and sub-
path 3, which need to be point-wisely compared with

the candidate subpaths: “84”,“46”, and “6enter” in the can-
didate PIN sequence “846”. The generation of naively inte-
grated trajectory is based on the estimated distances and
derived directions of each subpath. (b) then we start by
mapping the ending point of subpath 3 to the key Enter and
set D4 ¼ 0, and utilize the estimated moving distance and
derived direction in the subpath to estimate its starting
point on the keypad in a backward way. The Euclidean dis-
tance between the estimated starting point of subpath 3 and
key 6 (i.e., the 3rd key entry in the candidate PIN sequence
“846”) is found to be d3 ¼ 1:2 cm, and the accumulated
Euclidean distance for this subpath is D3 ¼ D4 þ d3 ¼
1:2 cm; (c) next, assuming the ending point of subpath 2 is
mapped to key 4, we similarly estimate the starting point of
the subpath and calculate the Euclidean distance between
the estimated starting point and the position of key 4 (i.e.,
d2 ¼ 2:1 cm). The accumulated Euclidean distance for the
previous two supaths is D2 ¼ D3 þ d2 ¼ 3:3 cm; (d) lastly,
we assume the ending point of the subpath 1 to be key 8
and estimate the starting point of the subpath. We find the
Euclidean distance between the estimated starting point
and the position of key 8 to be d1 ¼ 0:8 cm and calculate the
accumulated Euclidean distance for the entire candidate of
PIN sequence “846” as: D1 ¼ D2 þ d1 ¼ 4:1 cm. We note
that our algorithm recursively calculates the accumulated
Euclidean distance for every possible candidate of PIN
sequence based on Equations (4) and (5) and select the can-
didate with the minimum accumulated Euclidean distance
as the final result.

6.3 Tree-Based Key Sequence Inference
To implement the Backward PIN-Sequence Inference algo-
rithm, we develop a tree-based approach for PIN-sequence
inference. Next, we discuss how to build and optimize the
tree in our algorithm.

Building a Tree with PIN Sequence Candidates. In order to
record and compare different candidates of PIN sequence, we
seek to build a decimal tree according to the backward order
of all PIN sequence candidates. Each node is defined as a two-
tuple structure containing its corresponding key entry and
the Euclidean distance accumulated on the path from the root
node to the node, denoted as < NodeKey; AccuDist > .
Because the tree is built based on a backward order, nodes in
the jth level of the tree correspond to the ðN � jÞth key entries
of all candidates of PIN sequences. The root node is always
the last key entry (i.e., key Enter), while the leaf nodes are
always the first key entry of the candidate of PIN sequence
(i.e., number keys on the keypad). Each node (except the leaf
nodes) has 10 child nodes corresponding to keys 0 to 9. The
branches from one parent node to its child nodes represent
the subpaths between the keys corresponding to the parent
and child nodes. The leaves of the tree stores the final accumu-
lated Euclidean distance of each candidate of PIN sequence.
Our algorithm searches for the leaf node having theminimum
accumulated Euclidean distance, and traces back to recover
the path from the leaf node to the root node. The inferred PIN
sequence is generated by recording the key entries corre-
sponding to the nodes on the recovered path.

Fig. 10 shows an example of a tree for inferring a PIN
sequence of “419”, where the accumulated Euclidean dis-
tance for one candidate of PIN sequence “846” is 4:1 cm,
while another candidate of PIN sequence “419” has the accu-
mulated Euclidean distance of 1:6 cm, which is theminimum
over all candidates. Therefore, the candidate of PIN sequence
“419”will be determined to be the inferred PIN sequence.

Fig. 8. Example of the naively integrated trajectory having a large accu-
mulated error cannot correctly map to the key positions of the PIN
sequence ”419” (though the estimation error of distance and direction of
individual subpath is small).
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Subpath Calibration and Tree Pruning. In order to improve
the accuracy of our system, we take the advantage of the key-
pad dimension to calibrate subpaths. Intuitively, the distance
of a subpath should not exceed the dimension of a keypad.
Therefore, if the estimated distance of a subpath exceeds the
dimension of a keypad, our system replaces the estimated dis-
tance of the particular subpath with the possible longest dis-
tance on the keypad. In addition, since every non-leaf node in
a PIN-sequence tree has 10 child nodes, the jth level has 10j

nodes. Apparently, it is not necessary to store and calculate
the Euclidean distance in every node or sort the accumulated
distances of the PIN candidates for the entire PIN space. Our
algorithm prunes the tree by keeping the nodes with the least
m accumulated Euclidean distances for each tree level. In this
way, leaf nodes are largely reduced from 10N to m, where N
is the length of the PIN sequence. In this paper, we set
m ¼ min 10j; 100ð Þ in our algorithm for the tree level j, which
balances the tree size and algorithm performance. Compared
to our algorithm without tree pruning, the running time of
our algorithm with tree pruning is reduced from O 2N

� �
to

O Nð ÞwhenN is greater than 2.
Viterbi and HiddenMarkovModel Based Implementations.We

also study to apply the Viterbi algorithm and the Hidden
Markov Model (HMM) to solve the PIN inference problem.
We implement two methods, Viterbi and HMM-Viterbi to
infer the PIN sequences, both of which also have the running
time O Nð Þ, and we compare their performance with our
algorithm. 1) In particular, by considering each key button
as a state in the trellis diagram and expressing the cost of
the path between any two states as j ~RealKeyDistance�

~EstimatedSubpathj, we can then utilize Viterbi algorithm to
search the shortest path (i.e., the smallest summation of the
path cost for sequential states) in the trellis to infer the PIN
sequence. 2) HiddenMarkovModel can be applied to model
the PIN sequence inference problem, and the dynamic
searching in HMM needs to be implemented by Viterbi
algorithm [30]. The state transition probability between any
two keys can be expressed as expð�j ~RealKeyDistance�

~EstimatedSubpathjÞ, and the PIN sequence decoding prob-
lem becomes searching for the sequential states with the

highest probability (i.e., the greatest multiplication of the
transition probabilities of sequential states). Overall, we
find that through performance evaluation in Section 8.8,
the performances are comparable among the three meth-
ods when attacking with one PIN sequence. And the
original back PIN sequence Inference algorithm outper-
forms the Viterbi and HMM-Viterbi when generating
optimal PIN candidate list. This is because the Backward
PIN Sequence Inference algorithm tests all the most pos-
sible PIN sequences and can reflect the best capability of
the attack, especially when attacking with more than two
PIN sequences on the key-based security system, which
usually tolerates multiple tries.

7 IMPLEMENTATION

7.1 Key-Click Detection
Given embedded sensor data from wearable devices, our
system first performs key-click detection based on accelera-
tion readings to find the key-click events and the number of
keys in a PIN sequence and assist the trace segmentation.
Key clicks usually cause significant changes of acceleration
towards the keypad that has the potential to be distinguished
from other hand movements. In particular, we calculate the
magnitude of the composition of accelerations on three axes
first, and apply a threshold to examine the normalized mag-
nitude of the composed acceleration to detect key clicks. We
empirically determine the threshold to be 0.6 based on our
experiments with 20 participants in this work.

7.2 Key-Click Trace Segmentation
After key-click detection, we roughly segment input sensor
data into small chunks containing the data between two
consecutive detected key clicks. After segmentation, the
resulted small chunks contain the sensor data representing
subpaths, which include the acceleration caused by hand
movements from one key to another. In addition, to mitigate
high frequency noise caused by hand vibration, we apply
the Savitzky�Golayfilter [27] to each chunk of sensor data
respectively.

Fig. 9. Example of point-wise Euclidean distance accumulation for candidate PIN sequence ”846”, where the real PIN is ”419”.

Fig. 10. Illustration of the construction of the backward trajectory inference tree for recovering PIN ”419”.
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7.3 Quaternion-Based Coordinate Alignment
When recovering the user’s PIN sequence from thewearables’
embedded sensors, our system involves three different coor-
dinate systems, namely,wearable coordinate,world coordinate [2]
and keypad coordinate. The sensor readings fromawearable are
defined within the wearable coordinate and thus cannot be
used directly to represent hand movements because of the
rotating wearable coordinate caused by frequently changed
hand position. In this work, we employ quaternion to help
convert sensor readings from the wearable coordinate to key-
pad coordinate for hand trajectory derivation.

Specifically, we first convert the sensor readings from the
wearable coordinate to world coordinate by applying ~aw ¼
qdw~adq

�1
dw , where ~aw and ~ad are the sensor readings in the

world coordinate and werable coordinate, respectively, and
qdw is the quaternion that represents the conversion from the
werable coordinate to world coordinate. Then aw will be fur-
ther converted to the keypad coordinate via ~ak ¼ qwk~awq

�1
wk ,

where ~ak denotes the sensor readings in the keyboad coor-
diante and qwk denotes the quaternion that represents the
conversion from the world coordinate to keypad coordinate.
The quaternion qdw can be extracted from wearables during
hand movements, and qwk can be derived from qwk ¼ q�1

kw ,
where the quaternion qkw can be collected by placing a sensor
(i.e., smartphone, smartwatch, or IMU) aligned with the
coordinate of the target keypad. We note that adversaries
can utilize this method to obtain qkw without attention at a
time other than the user entering the PIN sequence.

8 PERFORMANCE EVALUATION

In this section, we present the experimental methodology
and describe the evaluation metrics. We then present the
most important results of our system with respect to PIN
sequence recovery using the Backward PIN-sequence
Recovery Algorithm. Finally, we show the performance of
two supporting schemes for PIN sequence recovery, dis-
tance estimation and direction derivation schemes.

8.1 Experimental Methodology
Keypads. We evaluate our system with three different kinds
of keypads as shown in Fig. 11: 1) A keypad on ATM
machine (from PNC bank) with the dimension of
108 mm� 76 mm; 2) A real detached ATM keypad with the
dimension of 127 mm� 95 mm, both 1) and 2) representing
the use cases with different ATM pad sizes; and 3) A
number pad of Dell USB wired keyboard L100 with the
dimension of 77 mm� 97 mm, representing the use case of
key-based security access to enterprise servers. The three
keypads have different structures and key depths. It is
important to evaluate their effects on our approach when
capturing fine-grained hand movements. We focus on
experiments on numbers to recover PIN-sequences.

Wearable Devices. In our experiments, we use three
different types of wearable devices, including two smart-
watches (i.e., LG W150 and Moto360) and an IMU (Inven-
sence MPU-9150) [4]. These wearables represent different
achievable maximum sampling rates (i.e., 200, 25 and 100
Hz, respectively). The LG W150 and Moto 360 are two com-
modity smartwatches running on Android Wear OS with
Bluetooth LE. The IMU contains a 9-axismotion tracking sen-
sor designed for consumer electronics. We use it as a proto-
typing alternative to a wearable device with its sampling
rate set to 100 Hz. During key-entry activities, the wearable
devices collect acceleration and quaternion data and send
them to a pre-associated storage device (i.e., smartphone via

Bluetooth and laptop via an USB cable for smartwatches and
IMU respectively). The ground truth of the handmoving dis-
tance and direction is computed through the video recorded
by a camera set on top of the keypad. In particular, we use
AutoCAD to connect two positions of the sensor in two cap-
tured video frames corresponding to the time points when
the finger just leaves the first key and about to touch the sec-
ond key, respectively. The measured distance and angle of
the line (with the positive X axis of the keypad) connecting
these two sensor positions are used as the ground truth of
the distance and direction of the handmovement.

Data Collection. We conduct experiments of various key-
entry activities with three different types of wearables on
three kinds of keypads. 20 volunteers are recruited to perfor-
mance key-entry activities over an 13-month period. The vol-
unteers are asked to enter keys in three ways: 1) 4-digit PIN
sequences consisting of five consecutive key clicks; 2) 6-digit
PIN sequences consisting of seven consecutive key clicks
(with ”Enter” as the last click) and 3) a single subpath consist-
ing of two consecutive key clicks. For each subpath, based on
the keypad layout, we classify different subpath lengths into
three representative scales: short, medium and long. Specifi-
cally, short covers subpaths between two adjacent keys with
no keys in between (e.g., 45, 41 and 75);medium is for horizon-
tal and vertical subpaths between two keys with one key in
between (e.g., 46 and 82); and long contains subpaths of two
keys neither horizontal nor vertical and with one or more
keys in between (e.g., 10, 37 and 29). We collect 7,000 PIN
sequences from three keypads when having 20 volunteers
wear three different kinds of wearables. For single subpath,
we collect 3,000 subpaths from three keypads including long,
medium and short distanceswith volunteerswearing an IMU.

8.2 Evaluation Metrics
We develop the following metrics to evaluate our system
with regard to the accuracy of distance estimation and
direction determination schemes and the performance of
our Backward PIN-sequence Inference Algorithm:

Distance Estimation Error. To evaluate the performance of
our distance estimation scheme, we define the Distance Esti-
mation Error as the difference between the estimated dis-
tance and the ground truth of the hand moving distance.
The ground truth of the hand moving distance is computed
through the recorded video during experiments. We study
the Distance Estimation Error in two ways: mean error and
cumulative distribution function (CDF).

Direction Classification Accuracy. To evaluate the perfor-
mance of our direction derivation scheme, we divide the 360
degree on the X-Y plane into 16 groups (i.e., 5 groups in each
quadrant excluding 4 overlapped groups) and examine
whether the deriveddirection is classified into the same group
as that of the corresponding ground truth. The ground truth of
angles is also computed through the recorded videos. The

Direction Classification Accuracy is
~Nc
Nc
, where ~Nc is the number

of directions have been classified into the same group

Fig. 11. Experiments: Three different kinds of keypads: detachable ATM
pad, keypad on ATM machine, keyboard; and wearable devices.
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containing the corresponding ground-truth direction, and Nc

is the total experimental runs of direction classification.
Top-k Success Rate. Given an experimental run of a key-

entry activity, our algorithm could return multiple top candi-
dates of key-entry sequence in an ascending order of the accu-
mulated Euclidean distance. We define that the inference
algorithm is a Top-k Success Hit if the first k candidates of key-
entry sequence returned from our algorithm contain the tar-
get user’s key-entry sequence. We further define the Top-k

Success Rate as the ratio (
eNk
s

Ns
) of the number of Top-k Success

Hits ( eNk
s ) over the total number of experimental runs (Ns)

when applying key-entry sequence inference to recover the
target user’s PIN sequence. Specially, when k ¼ 1, the ratio
indicates the rate of our algorithm that can successfully deter-
mine the target user’s key-entry sequencewithout ambiguity.

Tries Until Success. Since our system can provide multiple
candidates as the result for key-entry sequence inference,
the adversary has the chance to try out each key sequence
returned in the candidate list to recover the target user’s
PIN sequence. We define the Number of Tries Until Success as
the number of candidate key-entry sequence the adversary
has tried (starting from the candidate with the smallest
accumulated Euclidean distance) until he/she breaks the
key-based security system, suggesting a success recovery of
the target user’s PIN sequence. Thus, the Number of Trails
Until Success indicates the possible efforts that an attack
needs to take to break the key-based security system.

8.3 Performance of Backward PIN-Sequence
Inference

Wearable Devices. We first examine the performance of our
Backward PIN-sequence inference algorithm to infer 4-PIN
sequences on the detachableATMkeypadwith three different
wearable devices. Fig. 12a shows the top-k success rate of our
system from three different types of wearable devices. We
find that our system can effectively recover 4-PIN sequences
from all the three wearables, and higher success rate is
achievedunder higher sampling rates. In particular, by choos-
ing the top-1 choice, our system can achieve over 82 percent
success rate for the LGW150 and IMU, while the success rate
is 67 percent for the Moto 360. Furthermore, the PIN sequen-
ces can be inferred with increasing success rates if the adver-
sary utilizes more choices from the top-k candidate list.
Specifically, when using the top-2 choices, the adversary can
achieve about 94 percent success rate with the LG W150 and
IMU, and the success rate for the Moto 360 is over 80 percent.
Although the Moto 360 achieves lower success rates than the
LG W150 and IMU due to its much lower sampling rate (i.e.,
25 Hz), an adversary can still achieve a high probability to
reveal the PIN sequences based on top-2 or 3 choices. This
indicates that our system can tolerate the insufficient informa-
tion introduced bywearable deviceswith low sampling rates.

Fig. 12b depicts the cumulative distribution of the num-
ber of tries until successfully recovering the user’s 4-PIN
sequence from three wearables. We find that the adversary
can break over 97 percent PIN entries from the LG W150
and IMU within 5 tries, which is usually the maximum PIN
tries on ATM machine. The number of PIN entries revealed
increases to 99 percent, if the attacker conducts 10 tries. For
Moto 360, the attacker can break 90 percent PIN entries
within 5 tries and 96 percent within 10 tries. Therefore,
regardless of the types of wearable, the attacker can break
the user’s PIN sequence with few tries. Although the LG
W150 is set to use 200 Hz sampling rate and generates the
best performance, we find that using 100 Hz sampling rate
is enough to achieve comparable good results. Therefore,
we present the results using the IMU for the rest sections.

ATM Keypads and Keyboard. Fig. 13a shows the top-k
success rate to recover 4-PIN sequences on three keypads.
We observe that our system can achieve around 80 percent
success rate for all three keypads with the top-1 choice.
When using the top-5 choices, our system can achieve over
97 percent success rate with both of the detachable ATM
pad and the number pad on keyboard, while on real ATM
machine, the success rate is over 92.5 percent. Fig. 13b
confirms our observation in Fig. 13a. The results demon-
strate that our Backward PIN-sequence Inference is effective
when applied with keypads of different layouts and coordi-
nates. The success rate is higher with both of the detachable
ATM pad and the number pad on keyboard than that with
the ATM machine. Our results suggests that the electronic
magnetic field and the tilt angle of the ATM machine affect
the PIN entry recovery result on ATMmachine.

8.4 Distance Estimation of Different Kinds of
Keypads

We next study the performance of two supporting schemes.
The study of the distance estimation scheme is described in
this section, and the results of the direction determination
scheme is presented in the next section. We apply our dis-
tance estimation scheme to various subpaths across three dif-
ferent kinds of keypads. We compare the distance difference
between ground truth (i.e., obtained from camera) and the
estimated distance from sensor data. Take ATM machine as
an example, the distances for short,medium and long are 2.5, 5
and 6:4 cm, respectively.

We observe that the mean error is proportional to the dis-
tance scale, i.e., short distance has relative smaller error com-
pared with long distance, as shown in Fig. 14a. In particular,
the mean error of ATMmachine for short, medium and long
distance are 5, 7 and 8:5 mm, respectively. For detachable
ATM pad, the error of long, medium and short distance are
8, 6 and 3:5 mm, respectively. The mean error of long dis-
tance in keyboard number pad experiment is 8 mm, 5 mm
for medium distance and for short distance the error is as

Fig. 12. Performance of Backward PIN-sequence Inference to infer 4-PIN
sequences with three kinds of wearables on detachable ATMKeypad.

Fig. 13. Performance of 4-PIN sequence inference on three different
keypads by using medium sampling rate 100 Hz (IMU).
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low as 3 mm. The experiment results from keyboard shows
relative smaller distance error since the physical layout of
keyboard number pad is smaller than ATMmachine keypad
and detachable ATM pad. We observe that such error differ-
ence is marginal and reveal the effectiveness of our scheme.

Fig. 15a shows the cumulative distributive function of dis-
tance estimation errors. We observe that the 80th percentile
errors are 8, 10 and 12 mm for short, medium and long dis-
tance of ATMmachine, respectively. For detachable ATMpad
the 80th percentile error are 5, 10 and 13 mm, receptively and
the 80th percentile error of number pad experiment are 4, 8
and 13:2 mm respectively. The results also show the effective-
ness and robustness of our schemeunder various keypads.

8.5 Direction Derivation of Different Kinds of
Keypads

Next, we evaluate our slope-based direction derivation
scheme by showing the performance under three different
kinds of keypads. According to the keypad layout, we select
five representative directions in one quadrant. Take ATM
machine as an example, the five directions within the fourth
quadrant are: keys 2 to 8, keys 2 to 9, keys 1 to 9, keys 4 to 9
and keys 4 to 6. The corresponding direction angle for these
subpaths on the keypad are: 270 , 302 , 321, 338 and 360
degree. To evaluate our direction derivation scheme, we
study the direction classification accuracy of classifying the
directions of testing subpaths into the aforementioned 5
groups of directions angles. Fig. 14b shows the direction clas-
sification accuracywith five directions onATMmachine. The
X axis represents the ground truth direction between two
keys on the ATM machine. We find that there are few sub-
paths mistakenly classified as incorrect direction. In particu-
lar, our scheme can achieve 80 percent classification accuracy
for 270 degree and we observe that directions with larger
angles have better accuracy, which is up to 97 percent accu-
racy for 360 degree. This may due to that when user performs
vertical key clicks (e.g., key 2 to 8 with 270 degree on ATM
pad), there might be a small inclined angle between hand
moving direction and wrist moving direction. For keyboard
and ATM pad, we have similar high classification accuracy.
In addition, Fig. 15b shows the cumulative distribution

function of estimated five directions in the fourth quadrant.
We find that all five directions obtained from our scheme
only have small overlap for any two adjacent directions.
Moreover, 90 percent of the derived direction are close to the
ground truth direction within �10�. The above results show
that our system provides effective distance estimation and
direction derivation schemes under various keypads and is
robust in real environments.

8.6 Impact of PIN-Sequence Length
Because longer-PIN-sequence inference is more likely to be
affected by the errors of deriving hand movement trajectory,
we examine the impact of the PIN-sequence length to the per-
formance of the Backward PIN-sequence Inference Algorithm.
Fig. 16a shows the top-k success rate of recovering 6-PIN
sequences on three different kinds of keypads by using the
IMU collecting data at 100 Hz. We find that our system
achieves around 80 percent success rate of revealing 6-PIN
sequences on all three keypads using the top-1 choice. When
trying with the top-5 choices, our system achieves around 93
percent success rate on the three keypads. As we can see that
the results are very similar to those of inferring 4-PIN sequen-
ces in Fig. 13, indicating that the BackwardPIN-sequence Infer-
ence algorithm is robust to different lengths of PIN sequences.

Fig. 16b depicts the cumulative distribution of the number
of tries until successfully recovering the 6-PIN and 4-PIN
sequences on the three keypads, respectively. We observe
that our system can successfully break around 80 percent
6-PIN and 4-PIN sequences with one try and over 96 percent
6-PIN and 4-PIN sequences with 10 tries. The results show
that the PIN inference performance of our system is consis-
tently good for different PIN sequence lengths, because our
Backward PIN-sequence Inference algorithm does not accu-
mulate errors in recovering subpaths.

8.7 Impact of Sampling Rate
We then study the impact of the sampling rate of wearables
to our system. Fig. 17a shows the mean errors of the esti-
mated distances between two consecutive key clicks on the
detachable ATM pad with the IMU sampling at 25, 50 and
100 Hz, respectively. We find that higher sampling rates
generate slightly smaller errors for the short, medium and
long distances. In particular, the mean errors for short,
medium and long distances are 4.3, 8.5 and 13.1 mm when
the sampling rate is 25 Hz, And when the sampling rate is
50 Hz, the mean errors are 4.2, 8.3 and 10 mm, respectively.
In addition, Fig. 17b shows the direction classification
results of our slope-based direction derivation scheme
under various sampling rates. Although lower sampling
rates cause lower accuracy of direction derivation results,
our system still recovers over half of the moving directions
correctly, which indicates that our system can recover hand
trajectories with good performance at lower sampling rates.

Fig. 14. Distance estimationmean error and direction classification results
between two consecutive key clicks under 100 Hz sampling rate (IMU).

Fig. 15. Performance of distance estimation and direction derivation on
three kinds of keypads under 100 Hz sampling rate (IMU).

Fig. 16. Performance of 6-PIN Sequence Inference on three different
keypads by using medium sampling rate 100 Hz (IMU).
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We further evaluate the impact of different sampling
rates to our Backward PIN-sequence Inference algorithm .
Fig. 18a depicts the performance of 4-PIN and 6-PIN
sequence inferences with top-1 choice on the detachable
ATM pad with the IMU sampling at 25, 50 and 100 Hz. We
find that our system can achieve over 70 and 60 percent
accuracy in inferring both 4-PIN and 6-PIN sequences at 50
and 25 Hz sampling rate, respectively. Fig. 18b further con-
firms our observation in Fig. 18a. Moreover, we find that
adversaries can achieve very high accuracy of revealing
PIN sequences when trying more choices under low sam-
pling rates. Specifically, our system can successfully break
over 90 percent 6-PIN and 4-PIN sequences with five tries
under 50 Hz sampling rate and around 80 percent with five
tries under 25 Hz. The results demonstrate that our system
can effectively reveal PIN sequences when using various
sampling rates. Even the sensor data sampled at 25 Hz has
very high probability to leak the user’s PIN sequences.

8.8 Performance Comparison among Three
Algorithms

Finally, we compare the performance of the three methods
Backward PIN Sequence Inference, Viterbi algorithm and
HMM-Viterbi. Fig. 19a shows the top-k success rate of the
three algorithms in revealing 6-PIN sequences. As expected,
Viterbi algorithm and HMM-Viterbi are efficient to find the
optimal PIN sequence (i.e., top-1 candidate) from the esti-
mated PIN entry trajectory. In particular, Viterbi algorithm
and HMM-Viterbi achieve the same accuracy of 82 percent
as the Backward PIN Sequence Inference algorithm in find-
ing the top-1 result. Moreover, the Viterbi algorithm and
HMM-Viterbi have much lower accuracy than the Backward
PIN Sequence Inference algorithm when trying more than
one PIN candidates. The results show that HMM-Viterbi and
Viterbi are not as good as Backward PIN Sequence Inference
algorithm for investigating themulti-try problem in practical
attack, and thus cannot fully reflect the attackers’ capability.
Note that the HMM-Viterbi and Viterbi algorithm have the
similar performance, which is because that Viterbi algorithm
is applied in HMM to solve the decoding problem of

HMM [30]. We further compare the Tries Until Success
among the three algorithms. Fig. 19b shows that Backward
PIN Sequence algorithm outperforms the other two algo-
rithms for both revealing 4-PIN and 6-PIN sequences and
shows much more success rate enhancement to reveal PINs
of longer lengths (e.g., 6-PIN). The above comparisons show
that the Backward PIN Sequence algorithm not only finds
the optimal PIN sequence efficiently but also provides the
optimal candidate list, which provides more comprehensive
understanding of the PIN leakage issues on the key-based
security system fromwearable devices.

9 DISCUSSION

Wearing theWearable Device on the Left Hand or Right Hand.Our
training-free approach does not require mirroring the deriva-
tion from sensor data when applied to either the left-handed
or right-handed user since the inherent physics of key entry
activities will be preserved regardless of either case. We
assume the victim use either hand wearing a wearable (i.e., a
smartwatch or fitness tracker) to access key-based security
systems.While it is very difficult to know the exact number of
how many people sharing this style, we instead discuss the
population of the potential wearable user victims.We take the
right-handed user for discussion as the left-handed user share
the same conclusion. Wearable devices are usually designed
in a way that allows users to comfortably wear them on either
wrist (e.g., smartwatches no longer necessarily have crowns
as traditional watches do). There are many smartwatch
users [5], [9] claiming that they wear smartwatches on their
right wrists. Furthermore, for those wearing traditional watch
on the left wrist, they tend to wear fitness tracker on the right
wrist for health-related applications. Naturally, the right-
handed people use their right hand to perform key entry and
the sensors in their smartwatches or fitness trackers can be uti-
lized by our approach to reveal PINs. Given the growing
cheaper price of these wearable devices, many people wear
both a smartwatch and a fitness tracker on separate hand to
better serve their work and health applications, which further
increases the number of potential victims. Lastly, the increas-
ing popular usage of wearables leaves adversary great chan-
ces to recover the user’s sensitive information, making it
vulnerable irrespective of the hand onwhich it isworn.

Using Sensor Moving Direction as Hand Moving Direction.
We discuss the rationality of using sensor moving direction
as handmoving direction. The current system is designed for
recovering a PIN sequence by reconstructing hand move-
ment trajectories. We leverage embedded sensor readings
from wearable devices on a user’s wrist to determine the
direction.We use the sensormovement to represent the hand
movement since the hand and the wrist are moving together.
During our extensive experimental study, we observe that
sensor movement and handmovement share similar moving
trend. Therefore such a representation is reasonable.

Fig. 17. Distance estimation mean error and direction classification
results between two consecutive key clicks with IMU under 100, 50, and
25 Hz sampling rate.

Fig. 18. Performance of 4-PIN and 6-PIN Sequence Inference on detach-
able ATM pad by using IMU under 100, 50, and 25 Hz sampling rate.

Fig. 19. Performance comparison between different algorithms to infer
PIN sequence with IMU under 100 Hz on detachable ATM Keypad.
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The Trend of Sniffing Attacks. Based on the survey of over 15
wearable devices, we understand that the smartwatches can
transmit raw sensor data to the mobile device. The fitness
trackers transmit aggregated or simplified data to synchro-
nize with mobile devices, because current fitness trackers
only aims at providing coarse-grained information for the
applications, such as step counting and activity tracking. The
findings make the sniffing attack possible to obtain the sen-
sor data directly. Furthermore, with the growing demands
for more powerful body sensors to enable pervasive applica-
tions, such as health care, activity recognition, and human
computer interaction, we envision that the fine-grained sen-
sor data from fitness trackers is both necessary and useful to
support these applications, and the sniffing attacks will
remain as unneglectable threats.

Defending Strategies. Existing studies suggest to decrease
embedded sensors’ sampling rates (e.g., under 50 Hz) to miti-
gate the attack through smartwatches [34]. Our system shows
that users PINs can still be revealed fromwearables with such
low sampling rate (e.g., 50 Hz and lower). The reason is that
the strong distinct motion during the PIN entry can be cap-
tured by the wearable sensor even under low sampling rates.
Moreover, our system can recover the fine-grained PIN input
trajectory to reveal the PIN sequences. Furthermore, we
show that using longer PINs (e.g., 6-PIN sequences compared
to 4-PIN sequences) cannot diminish the possibility of leaking
the PIN information from wearables regardless its greater
password strength [3]. Future countermeasures may aim at
camouflaging the sensitive sensor data transmitted from
wearables to host devices. For instance, a wearable can inject
a certain type of noise to its sensor data (e.g., quaternions and
accelerations) so that the data cannot be used to derive fine-
grained hand movements while still effective for many
common applications (e.g., activity recognition and step
counting). Moreover, more secure schemes can be designed
to protect the access and transmission of sensor data. That is,
advanced encryption schemes are necessary to protect the
raw sensor readings in wireless communication, and the
access to sensor data should be regulated according to differ-
ence scenarios and applications by the wearable or its host
device’s operating system to avoid leakage.

10 CONCLUSION

In this paper, we showed that the embedded sensors on wrist-
wornwearable devices (i.e., smartwatches and fitness trackers)
can be exploited to discriminate mm-level distances of the
user’s fine-grained hand movements during key-entry activi-
ties, exposing the user to a serious security breach. We pre-
sented a PIN-sequence inference framework to recover the
user’s secret key entries when the user accesses key-based
security systems such asATMkeypads and regular keyboards.
The implemented system does not require any training or con-
textual information, which makes it applicable in real world
adversarial contexts. In particular, our system exploited the
physics phenomenon and unique patterns of key entry activi-
ties from the sensor data and developed distance estimation
and slope-based moving direction derivation schemes to cap-
ture the small handmovement between two consecutive keys.
Our system further applied the Backward PIN-sequence Infer-
ence algorithm to reveal the user’s complete PIN sequence,
leveraging both the spatial and temporal constraints of the key
entry to achieve a high success rate. Extensive experiments
involving 20 volunteers on three different types of keypads
over 13months showed that our system can achieve 80 percent

accuracy in revealing the user’s PIN sequences with one try,
and over a 90 percent success rate within three tries, while
recovering the hand movement trajectory has a mean error as
low as 6 mm. Such a technique kept a consistent performance
in revealing long PIN sequences (e.g., 6-PIN sequences) and
could still achieve a very high accuracy under very low sam-
pling rate of embedded sensors(e.g., 25Hz).
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